Jumat, 17 Februari 2012

MATERI KULIAH


PERALATAN PENYIMPANAN DATA
STMIK ATMA LUHUR – HADI SANTOSO
Tujuan
Menjelaskan peralatan penyimpanan data diluar memori utama dan CPU
Menjelaskan Magnetik Disk
Menjelaskan RAID
Menjelaskan Optical Disk
Menjelaskan Pita Magnetik
Faktor-Faktor
Kebutuhan akan memori utama saja tidak mencukupi maka diperlukan peralatan tambahan untuk menyimpan data yang lebih besar dan dapat dibawa kemana-mana.
Semakin besarnya peralatan penyimpanan maka dengan sendirinya akan mempengaruhi waktu pemrosesan data.
Peralatan Penyimpanan Data
Magnetik Disk, Floppy Disk, IDE Disk, SCSI Disk, RAID, Optical Disk, CDROM, CD-R, CD-RW, DVD
Pita Magnetik
Magnetik Disk
Disk adalah piringan bundar yang terbuat dari bahan tertentu (logam atau plastik) dengan permukaan dilapisi bahan yang dapat di magnetisasi.
Mekanisme baca/tulis menggunakan kepala baca atau tulis yang disebut head, merupakan komparan pengkonduksi (conducting coil).
Desain fisiknya, head bersifat stasioner sedangkan piringan disk berputar sesuai kontrolnya
Dua metode layout data pada disk, yaitu constant angular velocity dan multiple zoned recording
Disk diorganisasi dalam bentuk cincin – cincin konsentris yang disebut track
Tiap track pada disk dipisahkan oleh gap(gap: mencegah atau mengurangi kesalahan pembacaan maupun penulisan yang disebabkan melesetnya head atau karena interferensi medan magnet)
Sejumlah bit yang sama akan menempati track – track yang tersedia
Semakin ke dalam disk maka kerapatan (density) disk akan bertambah besar
Data dikirim ke memori ini dalam bentuk blok, umumnya blok lebih kecil kapasitasnya daripada track
Blok – blok data disimpan dalam disk yang berukuran blok, yang disebut sector
Track biasanya terisi beberapa sector, umumnya 10 hingga 100 sector tiap tracknya
Layout dan Pembacaan
Format data pada track disk
Field ID merupakan header data yang digunakan disk drive menemukan letak sector dan tracknya.
Byte SYNCH adalah pola bit yang menandakan awal field data
Karakteristik Magnetik Disk
Gerakan Head
Pada head tetap setiap track memiliki kepala head sendiri, sedangkan pada head bergerak, satu kepala head digunakan untuk beberapa track dalam satu muka disk.
Pada head bergerak adalah lengan head bergerak menuju track yang diinginkan berdasarkan perintah dari disk drive-nya
Portabilitas disk
Disk yang tetap (non-removable disk)
Disk yang dapat dipindah (removable disk).
Keuntungan disk yang dapat dipindah atau diganti – ganti adalah tidak terbatas dengan kapasitas disk dan lebih fleksibel
Sides/Sisi dan Platters/Piringan
Sides   :
satu sisi disk (single sides)
Dua muka disk (double sides)
Platters            :
Satu piringan (single platter)
Banyak piringan (multiple platter).
Mekanisme head
Head yang menyentuh disk (contact) seperti pada floppy disk, head yang mempunyai celah utara tetap maupun yang tidak tetap tergantung medan magnetnya. Celah atau jarak head dengan disk tergantung kepadatan datanya, semakin padat datanya dibutuhkan jarak head yang semakin dekat, namun semakin dekat head maka faktor resikonya semakin besar, yaitu terjadinya kesalahan baca.
Teknologi Winchester dari IBM mengantisipasi masalah celah head diatas dengan model head aerodinamik. Head berbentuk lembaran timah yang berada dipermukaan disk apabila tidak bergerak, seiring perputaran disk maka disk akan mengangkat headnya.
Istilah Winchester dikenalkan IBM pada model disk 3340-nya. Model ini merupakan removable disk pack dengan head yang dibungkus di dalam pack. Sekarang istilah Winchester digunakan oleh sembarang disk drive yang dibungkus pack dan memakai rancangan head aerodinamis
Disk piringan banyak (multiple platters disk)
Floppy Disk
Karakteristik disket adalah head menyentuh permukaan disk saat membaca ataupun menulis.
Efeknya Disket tidak tahan lama dan sering rusak.
Maka dibuat mekanisme penarikan head dan menghentikan rotasi disk ketika head tidak melakukan operasi baca dan tulis.
Efeknya Namun akibatnya waktu akses disket cukup lama
Karekteristik berbagai macam disket
IDE Disk (Harddisk)
Saat IBM menggembangkan PC XT, menggunakan sebuah hardisk Seagate 10 MB untuk menyimpan program maupun data. Harddisk ini memiliki 4 head, 306 silinder dan 17 sektor per track, dicontrol oleh pengontrol disk Xebec pada sebuah kartu plug-in. Teknologi yang berkembang pesat menjadikan pengontrol disk yang sebelumnya terpisah menjadi satu paket terintegrasi, diawali dengan teknologi drive IDE (Integrated Drive Electronics) pada tengah tahun 1980. Teknologi saat itu IDE hanya mampu menangani disk berkapasitas maksimal 528 MB dan mengontrol 2 disk. IDE berkembang menjadi EIDE (Extended Integrated Drive Electronics) mampu menangani harddisk lebih dari 528 MB dan mendukung pengalamatan LBA (Logical Block Addressing), yaitu metode pangalamatan yang hanya memberi nomer pada sektor – sektor mulai dari 0 hingga maksimal 224-1. Metode ini mengharuskan pengontrol mampu mengkonversi alamat – alamat LBA menjadi alamat head, sektor dan silinder. Peningkatan kinerja lainnya adalah kecepatan tranfer yang lebih tinggi, mampu mengontrol 4 disk, mampu mengontrol drive CD-ROM
SCSI Disk (Harddisk)
Disk SCSI (Small Computer System Interface) mirip dengan IDE dalam organisasi pengalamatannya.Perbedaan pada piranti antarmukanya yang mampu mentransfer data dalam kecepatan tinggi.Kecepatan transfernya tinggi, merupakan standar bagi komputer UNIX dari Sun Microsystem, HP, SGI, Machintos, Intel terutama komputer – komputer server jaringan, dan vendor–vendor lainnya SCSI sebenarnya lebih dari sekedar piranti antarmuka harddisk.
SCSI adalah sebuah bus karena mampu sebagai pengontrol hingga 7 peralatan seperti: harddisk, CD ROM, rekorder CD, scanner dan peralatan lainnya. Masing–masing peralatan memiliki ID unik sebagai media pengenalan oleh SCSI
Versi disk SCSI
RAID
RAID (Redundancy Array of Independent Disk) merupakan organisasi disk memori yang mampu menangani beberapa disk dengan sistem akses paralel dan redudansi ditambahkan untuk meningkatkan reliabilitas. Kerja paralel menghasilkan resultan kecepatan disk yang lebih cepat. Teknologi database sangat penting dalam model disk ini karena pengontrol disk harus mendistribusikan data pada sejumlah disk dan juga membacaan kembali RAID
Karakteristik umum disk RAID
RAID adalah sekumpulan disk drive yang dianggap sebagai sistem tunggal disk.
Data didistribusikan ke drive fisik array.
Kapasitas redudant disk digunakan untuk menyimpan informasi paritas, yang menjamin recoveribility data ketika terjadi masalah atau kegagalan disk
RAID merupakan salah satu jawaban masalah kesenjangan kecepatan disk memori dengan CPU dengan cara menggantikan disk berkapasitas besar dengan sejumlah disk–disk berkapasitas kecil dan mendistribusikan data pada disk–disk tersebut sedemikian rupa sehingga nantinya dapat dibaca kembali
RAID tingkat 0
Sebenarnya bukan RAID karena tidak menggunakan redundansi dalam meningkatkan kinerjanya. Data didistribusikan pada seluruh disk secara array merupakan keuntungan daripada menggunakan satu disk berkapasitas besar. RAID – 0 menjadi model data strip pada disk dengan suatu management tertentu hingga data sistem data dianggap tersimpan pada suatu disk logik. Mekanisme tranfer data dalam satu sektor sekaligus sehingga hanya baik untuk menangani tranfer data besar
RAID tingkat 1
Redundansi diperoleh dengan cara menduplikasi seluruh data pada disk mirror-nya. Seperti RAID – 0, RAID - 1 juga menggunakan teknologi stripping. Perbedaan adalah dalam tingkat 1 setiap strip logik dipetakkan ke dua disk yang secara logika terpisah sehingga setiap disk pada array akan memiliki mirror disk yang berisi data sama.
RAID – 1 mahal.
RAID – 1 peningkatan kinerja sekitar dua kali lipat dibandingkan RAID – 0 pada operasi baca, namun untuk operasi tulis tidak secara signifikan terjadi peningkatan. Cocok digunakan untuk menangani data yang sering mengalami kegagalan dalam proses pembacaan. RAID – 1 masih bekerja berdasarkan sektor – sektornya 
Keuntungan RAID – 1 :
Permintaan pembacaan dapat dilayani oleh salah satu disk karena terdapat dua disk berisi data sama, tergantung waktu akses yang tercepat.
Permintaan penyimpanan atau penulisan dilakukan pada 2 disk secara paralel.
Terdapat back-up data, yaitu dalam disk mirror-nya.
RAID tingkat 2
RAID – 2 mengganakan teknik akses paralel untuk semua disk
Seluruh disk berpartisipasi dan mengeksekusi setiap permintaan sehingga terdapat mekanisme sinkronisasi perputaran disk dan headnya
Teknologi stripping digunakan dalam tingkat ini, hanya stripnya berukuran kecil, sering kali dalam ukuran word atau byte
Koreksi kesalahan menggunakan sistem bit paritas dengan kode Hamming
RAID tingkat 3
Diorganisasikan mirip dengan RAID – 2. Perbedaannya pada RAID – 3 hanya membutuhkan disk redudant tunggal, tidak tergantung jumlah array disknya
Bit paritas dikomputasikan untuk setiap data word dan ditulis pada disk paritas khusus
Saat terjadi kegagalan drive, data disusun kembali dari sisa data yang masih baik dan dari informasi paritasnya
Menggunakan akses paralel dengan data didistribusikan dalam bentuk strip – strip kecil
Kinerjanya menghasilkan transfer berkecepatan tinggi, namun hanya dapat mengeksekusi sebuah permintaan I/O saja sehingga kalau digunakan pada lingkungan transaksi data tinggi terjadi penurunan kinerja
RAID tingkat 4
Menggunakan teknik akses yang independen untuk setiap disknya sehingga permintaan baca atau tulis dilayani secara paralel RAID ini cocok untuk menangani sistem dengan kelajuan tranfer data yang tinggi Tidak memerlukan sinkronisasi disk karena setiap disknya beroperasi secara independen.
Stripping data dalam ukuran yang besar.
Strip paritas bit per bit dihitung ke seluruh strip yang berkaitan pada setiap disk data
Paritas disimpan pada disk paritas khusus
Saat operasi penulisan, array management software tidak hanya meng-update data tetapi juga paritas yang terkait
Keuntungannya dengan disk paritas yang khusus menjadikan keamanan data lebih terjamin, namun dengan disk paritas yang terpisah akan memperlambat kinerjanya
RAID tingkat 5
Mempunyai kemiripan dengan RAID – 4 dalam organisasinya .Perbedaannya adalah strip – strip paritas didistribusikan pada seluruh disk. Untuk keamanan, strip paritas suatu disk disimpan pada disk lainnya. RAID – 5 perbaikan dari RAID – 4 dalam hal peningkatan kinerjanya. Disk ini biasanya digunakan dalam server jaringan
RAID tingkat 6
Merupakan teknologi RAID terbaru.
Menggunakan metode penghitungan dua paritas untuk alasan keakuratan dan antisipasi terhadap koreksi kesalahan.Seperti halnya RAID – 5, paritas tersimpan pada disk lainnya.Memiliki kecepatan transfer yang tinggi
Optical Disk
1980,Philips&Sony mengembangkan CD (Compact Disk). Detail teknis produk ini dipublikasikan dalam international standard resmi pada tahun 1983 yang populer disebut red book. CD merupakan disk yang tidak dapat dihapus, mampu menyimpan memori kurang lebih 60 menit informasi audio pada salah satu sisinya. CD yang mampu menyimpan data dalam jumlah yang besar, menjadikannya media penyimpan yang fleksibel digunakan di berbagai peralatan seperti komputer, kamera video, MP3 player, dan lain-lain Optical Disk
CD ROM(Compact Disk – Read Only Memory)
Dikenalkan pertama kali oleh Phillips dan Sony tahun 1984 dalam publikasinya, yang dikenal dengan Yellow Book . Perbedaan utama dengan CD adalah CD ROM player lebih kasar dan memiliki perangkat pengoreksi kesalahan, untuk menjamin keakuratan tranfer data ke komputer.
Secara fisik keduanya dibuat dengan cara yang sama, yaitu terbuat dari resin, contohnya polycarbonate, dan dilapisi dengan permukaan yang sangat reflektif seperti aluminium. Penulisan dengan cara membuat lubang mikroskopik sebagai representasi data dengan laser berintensitas tinggi. Pembacaan menggunakan laser berintensitas rendah untuk menterjemahkan lubang mikroskopik ke dalam bentuk data yang dapat dikenali komputer. Saat mengenai lubang miskrokopik, intensitas sinar laser akan berubah – ubah. Perubahan intensitas ini dideteksi oleh fotosensor dan dikonversi dalam bentuk sinyal digital
CD ROM(Compact Disk – Read Only Memory)
Saat disk membaca data dibagian dekat pusat disk diperlukan putaran rendah karena padatnya informasi data, sedangkan apabila data berada di bagian luar disk diperlukan kecepatan yang lebih tinggi Metode mengatasai masalah kecepatan :
Sistem constant angular velocity (CAV), yaitu bit – bit informasi direkam dengan kerapatan yang bervariasi sehingga didapatkan putaran disk yang sama. Metode ini biasa diterapkan dalam disk magnetik, kelemahannya adalah kapasitas disk menjadi berkurang.
Sistem constant linier velocity (CLV), yaitu dalam mengantisipasi kerapatan data pada disk dengan menyesuaikan kecepatan putaran disk yang dikontrol oleh disk drive-nya.
CD ROM(Compact Disk – Read Only Memory)
Data pada CD-ROM diorganisasikan sebagai sebuah rangkaian blok-blok Format ini terdiri dari field-field Sync : Field sync mengidentifikasikan awal sebuah blok. Field ini terdiri dari sebuah byte yang seluruhnya nol, 10 byte yang seluruhnya satu, dan sebuah byte akhir yang seluruhnya nol.
Header : Header terdiri dari alamat blok dan byte mode. Mode nol menandakan suatu field data blanko; mode satu menandakan penggunaan kode error-correcting dan 2048 byte data; mode dua menandakan 2336 byte data pengguna tanpa kode error-correcting.
Data : Data pengguna
Auxiliary : Data pengguna tambahan dalam mode dua. Pada mode satu, data ini merupakan kode error-correcting 288 byte.
CD ROM(Compact Disk – Read Only Memory)
Sistem file CD-ROM yang standar, di High Sierras (perbatasan California – Nevada) dikenal dengan sebutan High Sierra (IS 9660). Standar ini meliputi 3 level. Level 1 diantaranya berisi :
Nama – nama file maksimum 8 karakter, yang secara opsional diikuti dengan nama ekstensi maksimal 3 karakter. (Menyesuaikan sistem operasi MS-DOS. Untuk level 2 mencapai 32 karakter.
Nama – nama file hanya dapat memuat huruf – huruf besar, digit, dan karakter tambahan tertentu saja.
Direktori dapat dibuat hingga mencapai 8 tingkat tanpa memuat karakter ekstensi.
CD ROM(Compact Disk – Read Only Memory)
Format blok CD-ROM
CD – R (Compact Disk Recordables) Secara fisik CD-R merupakan CD polikarbonat kosong berdiameter 120 mm sama seperti CD ROM. Perbedaannya adanya alur – alur untuk mengarahkan laser saat penulisan. Awalnya CD-R dilapisi emas sebagai media refleksinya. Permukaan reflektif pada lapisan emas tidak memiliki depresi atau lekukan – lekukan fisik seperti halnya pada lapisan aluminium sehingga harus dibuat tiruan lekukan antara pit dan land-nya.Caranya dengan menambahkan lapisan pewarna di antara pilikarbonat dan lapisan emas. Jenis pewarna yang sering digunakan adalah cyanine yang berwarna hijau dan pthalocynine yang berwarna oranye kekuning-kuningan. Pewarna ini sama seperti yang digunakan dalam film fotografi sehingga menjadikan Kodak dan Fuji produsen utama CD-R
CD – R (Compact Disk Recordables)
Sebelum digunakan pewarna bersifat transparan sehingga sinar laser berdaya tinggi dapat menembus sampai ke lapisan emas saat proses penulisan. Saat sinar laser mengenai titik pewarna, sinar ini memanaskannya sehingga pewarna terurai melepaskan ikatan kimianya membentuk suatu noda. Noda – noda inilah sebagai representasi data yang nantinya dapat dikenali oleh foto-detektor apabila disinari dengan laser berdaya rendah saat proses pembacaan. Seperti halnya jenis CD lainnya, CD-R dipublikasikan dalam buku tersendiri yang memuat spisifikasi teknisnya yang dikenal dengan Orange Book. Buku ini dipublikasikan tahun 1989. Terdapat format pengembangan, yaitu ditemukannya seri CD-ROM XA yang memungkinkan penulisan CD-R secara inkremental sehingga menambah fleksibilitas produk ini. CD_ROM XA memiliki multitrack dan setiap track memiliki VOTC (volume table of content) tersendiri. Berbeda dengan model CD-ROM sebelumnya yang hanya memiliki VOTC tunggal pada permulaan saja.

CD – RW (Compact Disk Rewritables)
Jenis CD ini memungkinkan penulisan berulang kali sehingga jenis ini memiliki nilai kompetitif dibandingkan jenis lain. Karena proses penulisan berulang kali maka secara fisik berbeda dengan CD-R. CD-RW tidak menggunakan lapisan pewarna, namun menggunakan logam paduan antara perak, indium, antimon dan tellurium. CD-RW drive menggunakan laser dalam 3 daya berbeda.
Laser berdaya tinggi bertugas melelehkan paduan logam untuk mengubah kondisi stabil kritalin reflektivitas tinggi menjadi kondisi stabil amorf reflektivitas rendah agar menyerupai sebiah pit.
Laser berdaya sedang menjadikan logam paduan meleleh dan berubah menjadi kondisi kristalin alamiah sebagai representasi land.
Laser berdaya rendah digunakan dalam proses pembacaan saja. Saat ini CD-RW belum mampu menggeser penggunaan CD-R karena disamping harganya masih relatif mahal dibandingkan CD-R, juga karena CD-R yang tidak dapat dihapus merupakan backup data terbaik saat ini.
DVD  (Digital Versatile Disk, awalnya Digital Video Disk)
Pengembangan CD untuk memenuhi kebutuhan pasar dalam penyimpanan memori besar . Desain DVD sama dengan CD biasa, terbuat dari polikarbonat 1,2 mm yang berisi pit dan land, disinari dioda laser dan dibaca oleh foto-detektorDVD lebih besar kapasitasnya, yaitu untuk sisi tunggal dan berlapis tunggal 4,7 GB, sedangkan untuk berlapis ganda ataupun bersisi ganda akan lebih besar lagi
Hal yang baru :
Pit – pit lebih kecil (0,4 mikron, atau setengahnya CD biasa)
Spiral lebih rapat (0,74 mikron, sedangkan pada CD biasa 1,6 mikron) .
Menggunakan teknologi laser merah dengan ukuran 0,65 mikron, sedangkan pada CD biasa 0,78 mikron.
DVD  (Digital Versatile Disk, awalnya Digital Video Disk)
Tranfer data pada DVD drive sekitar 1,4 MB/det, sedangkan CD biasa hanya 150 KB/det. Kecepatan, teknologi laser yang berbeda menimbulkan sedikit masalah untuk kompatibilitas dengan teknologi CD maupun CD-ROM. Akan tetapi, saat ini beberapa produsen telah mengantisipasi dengan diada laser ganda ataupun teknologi lain yang memungkinkan saling kompatibel. Saat ini berkembang 4 format DVD, yaitu :
Bersisi tunggal dengan lapisan tunggal (kapasitas 4,7 GB)
Bersisi tunggal dengan lapisan ganda (kapasitas 8,5 GB)
Bersisi ganda dengan lapisan tunggal (kapasitas 9,4 GB)
Bersisi ganda dengan lapisan ganda (kapasitas 17 GB)
Piringan berlapis ganda memiliki satu lapisan reflektif pada bagian bawah, yang ditutup dengan lapisan semireflektif.
Lapisan bawah memiliki pit dan land yang lebih lebar agar akurat dalam pembacaan sehingga lapisan bawah berkapasitas lebih kecil daripada lapisan atasnya.
Pada piringan bersisi ganda dibuat dengan melekatkan dua sisi disk.
Pita Magnetik
Sistem pita magnetik menggunakan teknik pembacaan dan penulisan yang identik dengan sistem disk magnetik Medium pita magnetik berbentuk track – track paralel, sistem pita lama berjumlah 9 buah track sehingga memungkinkan penyimpanan satu byte sekali simpan dengan satu bit paritas pada track sisanya. Sistem pita baru menggunakan 18 atau 36 track sebagai penyesuaian terhadap lebar word dalam format digital  Seperti pada disk, pita magnetik dibaca dan ditulisi dalam bentuk blok – blok yang bersambungan (kontinyu) yang disebut physical record. Blok – blok tersebut dipisahkan oleh gap yang disebut inter-record gap
Pita Magnetik
Format fisik pita magnetik
Pita Magnetik Head pita magnetik merupakan perangkat sequential access. Head harus menyesuaikan letak record yang akan dibaca ataupun akan ditulisi. Apabila head berada di tempat lebih atas dari record yang diinginkan maka pita perlu dimundurkan dahulu, baru dilakukan pembacaan dengan arah maju. Sangat berbeda pada teknologi disk yang menggunakan teknik direct access. Kecepatan putaran pita magnetik adalah rendah sehingga transfer data menjadi lambat. Pita magnetik mulai ditinggalkan digantikan oleh jenis – jenis produk CD
Kesimpulan
Kebutuhan akan memori utama saja tidak mencukupi maka diperlukan peralatan tambahan untuk menyimpan data yang lebih besar dan dapat dibawa kemana-mana.Disk adalah piringan bundar yang terbuat  dari bahan tertentu (logam atau plastik) dengan permukaan dilapisi bahan yang dapat di magnetisasi.Dengan berkembangnya komputer pribadi maka diperlukan media untuk mendistribusikan software maupun pertukaran data. Solusinya ditemukannya disket atau floppy disk.
Kesimpulan
RAID (Redundancy Array of Independent Disk) merupakan organisasi disk memori yang mampu menangani beberapa disk dengan sistem akses paralel dan redudansi ditambahkan untuk meningkatkan reliabilitas.Produk – produk opitical disk diataranya: CD, CD-ROM, CD-R, CD-RW, DVD,Sistem pita magnetik menggunakan teknik pembacaan dan penulisan yang identik dengan sistem disk magnetik. Soal-Soal
Jelaskan peralatan penyimpanan data diluar memori utama dan CPU?
Jelaskan karakteristik magnetic Disk?
Berapakah kecepatan transfer unit pita magnetic 9 trak yang memiliki kecepatan 120 inci per detik dan yang memiliki kerapatan pita 1600 bit linear per inci.
Soal-Soal
Asumsi sebuah konfigurasi 10 drive RAID. Isi matrik dibawah ini yang membandingkan bermacam-macam tingkat RAID:
Masing-masing parameter dinormalisasikan ke tingkat RAID dan memberikan kinerja terbaik. Kepadatan penampungan berkaitan dengan bagian penampung disk yang bisa digunakan untuk data pengguna. Kinerja bandwidth menggambarkan kecepatan data dapat transfer keluar array. Kinerja transaksi kinerja mengukur jumlah operasi I/O per detik suatu array dapat dibentuk.

Sejarah Perkembangan Komputer

Sejarah Komputer Generasi Pertama
Berikut Sejarah Komputer Generasi Pertama:
Pada waktu Perang Dunia Kedua, negara-negara yang ikut dalam perang tersebut terus berusaha untuk mengembangkan komputer yang akan digunakan untuk mengeksploit potensi strategis yang dimiliki komputer. Karena hal ini, maka adanya peningkatan pendanaan dari negara untuk mempercepat pengembangan komputer serta kemajuan teknik komputer.
Dan pada tahun 1941, seorang insinyur jerman – Konrad Zuse berhasil membangun sebuah komputer Z3 yang digunakan untuk mendesain pesawat terbang dan juga peluru kendali.
Dilain pihak, pihal sekutu juga membuat kemajuan dalam hal pengembangan kekuatan komputer.  Dan pihak Inggris pada tahun 1943 telah menyelesaikan komputer yang digunakan untuk memecahkan kode rahasia yang diberi nama Colossus, untuk memecahkan kode rahasia yang digunakan militer Jerman. Dan dampak dari pembuatan Colussus ini tidak memberikan pengaruh yang signifikan terhadap perkembangan industri komputer dikarenakan beberapa alasan yaitu:
  • Colossus bukan merupakan komputer general (serba guna), hanya digunakan untuk memecahkan kode rahasia saja.
  • Dan keberadaan komputer ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Disamping itu, ada usaha lain yang dilakukan pihak Amerika Serikat pada waktu itu dan berhasil mencapai kemajuan lainnnya, yaitu seorang insinyur Harvard – Howard H.Aiken (1900-1973) yang bekerja dengan IBM berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500mil.  The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Lalu perkembangan komputer lain pada masa itu adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania . Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW.
Komputer tersebut dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.
Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usha membangun konsep desin komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Computer (EDVAC) pada tahun 1945 dengan sebuh memori untuk menampung baik program ataupun data.
Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur Von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur von Neumann tersebut.
Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode-biner yang berbeda yang disebut “bahasa mesin” (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dan silinder magnetik untuk penyimpanan data.
Berikut ini Sejarah Komputer Generasi Kedua:
Dimulai pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis.  Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya.
Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer-komputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya.
Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singakatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program.
Salah satu contoh penting komputer pada masa ini adalah IBM 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memproses informasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji.
Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karir baru bermunculan (programmer, analyst, dan ahli sistem komputer). Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.
Sejarah Komputer Generasi Ketiga:
Berikut ini Sejarah Komputer Generasi Ketiga:
Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini.
Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC : integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa.
Para ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponenkomponen dapat dipadatkan dalam chip.
Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.
Berikut Sejarah Komputer Generasi Keempat:
Setelah IC, tujuan pengembangan menjadi lebih jelas:  mengecilkan ukuran sirkuit dan komponenkomponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.
Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukurang setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan keterandalan komputer.
Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yang sangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap perangkat rumah tangga seperti microwave oven, televisi, dn mobil dengan electronic fuel injection dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.
Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat.
Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensial terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputerkomputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Komputer jaringan memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas.
Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.
Berikut uraian Sejarah Komputer Generasi Kelima:
Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001: Space Odyssey.
HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapa komputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhana. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertia manusia sangat bergantung pada konteks dan pengertian ketimbang sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang desain komputer dan teknologi semkain memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model non Neumann. Model non Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia.
Ulasan Mengenai Arsitektur dan Organisasi Komputer Generasi Ke Enam:
Generasi komputer ke-enam merupakan generasi komputer masa depan. Pengembangan komputer generasi keenam lebih berpusat pada kecerdasan buatan(Artificial Intelligence) dan interaksi antara manusia dengan komputer. Interaksi ini mencakup interaksi secara fisik, psikis, interaksi dalam bahasa (linguistic) dan logika(logic). Komputer tanpa program (programless computer) ini mungkin membentuk ciri utama generasi komputer yang akan datang. Komputer generasi keenam ini juga memiliki bermacam-macam bentuk dan kecerdasan. Bentuk disini dimaksudkan bahwa bentuk komputer ini tergantung dari kebutuhan Misal berbentuk pen sehingga mudah dibawa dll. Kecerdasan yang dimaksud disini bahwa komputer memiliki kecerdasan tertentu saja menurut si pembuat, misalnya komputer yang dipasang di mobil untuk memonitor kondisi lalulintas. Selain itu, komputer generasi keenam mudah untuk dioperasikan sehingga semua orang bisa menggunakan dengan kemampuan software dan hardware yang didukung sistem operasi yang bagus.

Segi arsitektur Komputer
Arsitektur komputer generasi keenam :
1. Mencapai teraflops yaitu aritmatika sepuluh perdetik.
2. RISC (Reduced Instruction Set Computing) merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor.
3. Pipelening untuk jumlah instruksi yang dapat ditingkatkann dalam satu unit waktu.
4. Pemrosesan parallel.
5. Bahasa pemrograman tingkat tinggi (lebih dekat dengan manusia
Kemunculan-kemunculan dari generasi computer pasti menghasilkan perubahan-perubahan yang signifikan mengenai arsitektur computer. Hal tersebut bisa terjadi karena arsitektur computer adalah bagian yang paling vital. Mengapa demikian? Karena kemajuan dari industry computer ditentukan oleh desain arsitektur computer. Arsitektur computer merupakan atribut-atribut system computer yang terkait dengan seorang programmer seperti set instruksi, aritmatika, register, atau mekanisme I/O. Komputer generasi ke-6 menggunakan system vector processor. Sistem vector processor ini mempunyai prinsip yaitu adanya penggunaan dari beberapa buah processor yang dapat bekerja sama secara parallel. Sebenarnya system processor seperti ini sudah mulai diterapkan oleh computer generasi ke-4 dengan processor generasi core dari Intel. Dengan kata lain computer generasi ke-6 ini adalah penyempurnaan computer generasi sebelumnya.
Yang perlu diperhatikan disini adalah sedang dirintisnya suatu computer tanpa program (programless computer) pada computer generasi ke-6. Hal ini berdampak pada semakin mandirinya suatu computer karena dapat berjalan tanpa campur tangan dari seorang programmer.

· Segi organisasi Komputer:
1. Penggunaan blue laser, hologram.
2. Penggunaan sistem dengan lebih dari 200 vektor.
3. Bentuk bermacam-macam tergantung kebutuhan
Organisasi Komputer adalah bagian yang terkait erat dengan unit–unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal–sinyal kontrol. Organisasi computer pada computer generasi ke-6 mengalami perubahan yang sangat signifikan. Hardware komputer yang mempunyai fungsi tertentu seperti monitor, keyboard, mouse, speaker, maupun chasing beserta isinya tidak lagi digunakan. Fungsi-fungsi dari setiap hardware computer tersebut nantinya akan digantikan oleh sebuah perangkat yang mempunyai kemampuan istimewa. Perangkat yang mini ini nanti berisi microchip yang mempunyai kemampuan sama dengan computer, yang dapat memancarkan sinar hologram. Sinar hologram tersebut mempunyai fungsi seperti menjadi screen display dan keyboard
Ada beberapa konsep mengenai perkembangan komputer generasi keenam ini. Beberapa sumber menjabarkan sebagai berikut :
1. Komputer optik.
Komputer ini akan menggunakan partikel cahaya yang disebut photons. Ilmuan NASA telah mencoba untuk menggunakan cahaya dengan kecepatan yang sangat tinggi tanpa memperhitungkan hambatan udara. Dr. Donald Frazier telah melakukan penelitian terhadap blue laser. Beliau berkata bahwa apa yang didapat dari blue laser ini adalah perkembangan yang super cepat, super miniature, super ringan dan biaya yang lebih rendah dalam operasi komputer dan komunikasi optik.
2. Komputer Hologram
Komputer ini menggunakan hologram untuk pengoperasian. Bentuk komputer sudah tidak seperti generasi sebelumnya. Komputer dapat berbentuk arloji, pen dan sebagainya.
3. Fujitsu Corporation berencana membangun komputer generasi keenam dengan sistem parallel vektor. Tujuannya adalah untuk mencapai teraflops. Pertumbuhan WAN menjadi ciri menonjol yang diharapkan oleh Fujitsu
          Mudahan-mudahan dengan adanya computer generasi ke enam, mampu menjadi computer yang serba guna, dan dapat memudah kan bagi para pengguna (user) untuk melakukan suatu pekarjaan nya.